

The Self-Medication Assessment Tool (SMAT)

Training Program

What is the Self-Medication Assessment Tool?

The Self-Medication Assessment Tool (SMAT) is a comprehensive instrument intended to screen for medication self-management deficits in older adults and to facilitate targeted interventions.

Contents

Module II: Introduction and Background

Module II: Administration and Scoring

Module III: Interpretation and Making Recommendations

Module I: Introduction and Background

Part A: Factors Affecting Medication Adherence

our own footer Your Logic

Background

A person's capacity for medication management is defined as the "cognitive and functional ability to self-administer a medication regimen as it has been prescribed."

The majority of community dwelling older adults are engaged in the self-care activity of managing a medication regimen.

Background

It has been estimated that 35 - 60% of people do not take their medications as prescribed.

Drug related problems are reported to be a major or contributing cause of:

- about 19-28% of hospitalisations in people over age fifty,
- increased emergency room visits,
- and increased need for assisted living arrangements.

Factors Influencing Adherence

Many factors affect long-term adherence to medication therapies, including:

- Patient Factors
- Medical & Treatment Factors
- System Barriers

Factors Affecting Adherence: Patient Factors

Several patient factors have been identified to influence medication adherence, namely:

- Age
- Physical & Sensory Factors
- Memory & Cognition
- Attitudes, beliefs and preferences

Patient Factors: Age

- Adherence across adult age groups
 - Ages 65 74 = fewest errors
 - Ages 75+ = most errors
- Why do the "young" older adults perform better?
 - Less busy and/or routine activities allows planning/ use of memory aids
 - Health-care is a priority

Patient Factors: Age

Increasing Age

- · Physical functional capacity impacted
 - E.g., Arthritic conditions can make it difficult to remove medication from packaging
- Impaired drug metabolism and unique sensitivity to drug effects
 - Can impact cognition, mobility, memory

Patient Factors: Age

Increasing age

- Sensory acuity changes
 - Vision
 - Need 12 pt or larger font and high contrast text on labelling
 - Hearing
 - High frequency loss affects language comprehension
 - Function best with low noise environment and low vocal tone

Patient Factors: Memory & Cognition

The complex cognitive task of medication adherence includes:

- Understanding the instructions
- Making a plan of action (integrating with daily activities)
- Remembering what to do
- Remembering to do it
- Remembering if you did it already (reality monitoring)
- Deciding what to do if missed a dose
- Assessing performance
- Deciding if memory aids are needed

- There are many aspects of memory performance related to medication adherence. Some decline in normal aging, but others do not.
- Decreased cognitive ability may not lead to adherence problems, as many seniors compensate for normal cognitive declines very successfully.

Patient Factors: Memory & Cognition

Cognitive abilities that are maintained or improved in older adults not suffering from dementia:

- Automatic processing
 - Highly practiced tasks show few declines.
- Increased vocabulary
 - The size of our vocabulary continues to increase throughout adulthood.

- Prospective memory (Remembering to do something in the future)
 - Seniors, particularly 60 75 year olds, are often superior at remembering to carry out an action in the future because they use reminders effectively.

- Both External and Internal cues can be helpful with prospective memory:
 - External Cues: Physical reminders (alarms, visual cues)
 - can be very effective, but are used less often.
 - Internal Cues: Mental plans
 - Time-based cues ("I will take my pill at 10 pm")
 - Event-based cues ("I will take my pill before bed")
 - Event-based cues are generally more effective, but sometimes not when the routine is disrupted.

Patient Factors: Memory & Cognition

Age-related losses in older adults not suffering from dementia:

- Reduced speed of processing
 - Information needs to be presented in an organized and unhurried fashion.

- Reduced working memory
 - Working memory allows us to juggle multiple pieces of information, and focus on a problem without being distracted.
 - Older adults can be challenged when needing to:
 - combine instructions for different medications into a plan of action
 - integrate plan of action into daily activities

- Reduced source memory:
 - Older adults are more likely to forget where they learned something, even if they remember the information.
 - Some older adults will therefore make decisions about how to take their medications based on information that comes from unreliable sources (e.g., magazines, television).

- Reality Monitoring: remembering that an action has been carried out.
 - difficult to recall accurately whether a medication has been taken earlier that day, particularly if a well-established routine exists.
 - difficult to determine if we actually carried out an action, or simply thought about it.
 - Blister packs and dosettes are particularly helpful to avoid doubling doses due to age-related decline in reality monitoring.

- Research suggests that people adopt external memory aids because of their beliefs concerning memory, not because they believe their illness is serious.
 - Education should focus on the idea that everyone needs memory aids, as well as on the importance of adherence.

Patient Factors: Attitudes, Beliefs and Preferences

- General attitude toward taking medications
 - Negative: "drugs don't work for me"
 - Overly positive: "there must be a drug that can solve my problem"
- Patient's wants and expectations
 - "cure my pain"
 - "not to have to take so many pills every day"

Patient Factors: Attitudes, Beliefs and Preferences

- Patient beliefs and knowledge
 - Unsure if medication is of benefit
 - Concern about risks
 - Side effects experienced (patient or family/friends)
 - Confusion over how or why to take a medication
 - Fear related to previous problems or those of a family member

Medical and Treatment Factors: Diagnosis

- Symptom severity
 - Higher rates of adherence (>65%) with:
 - Hypertension, hypothyroidism, diabetes
 - Lower rates (50% or less) with "silent" diseases:
 - osteoporosis and hypercholesterolemia
- Increased co-morbidity burden
 - Increased adherence rates among those with multiple diagnoses
 - E.g., Hypertension + hypercholesterolemia + gout

Medical and Treatment Factors: Diagnosis

- Increased adherence with add-on drug therapy
 - Due to previous experience taking medications for a condition

Medical and Treatment Factors: Diagnosis

- Depression
 - People who are depressed are likely to:
 - amplify the side-effects of medications,
 - misinterpret symptoms of depression as side effects
 - Depression related to some medical conditions can go undetected and result in decreased adherence
 - E.g., Depression post-stroke
 - Antidepressants prescribed by psychiatrist
 - Improved compliance with refills

Medical and Treatment Factors: Regimen Complexity

- A complex medication regimen for a patient includes:
 - · high medication count,
 - frequent daily dosing,
 - · multiple dosage forms,
 - · additional usage directions
- Complex medication regimens have been linked to a greater risk of medication non-adherence in some patient populations

Medical and Treatment Factors: Patient-Provider Relationship

- Patient-provider relationship
 - Often, patients are provided little information about their medications
 - Information for older adults is best provided in list format

Medical and Treatment Factors: Patient-Provider Relationship

- Pharmacists and physicians
 - overestimate how much information they provide
 - rarely ask about side-effects or other barriers to adherence
 - may not recognize patients' low level of understanding/recall
 - e.g., "take one capsule 3 times a day" confusing
 - "take one capsule 8am, 3pm, and 10 pm" better

System Barriers: Socio-economic Issues

- Education
 - Low literacy levels
- Ethnicity
 - Impacts beliefs about healthcare an medications
- Language
 - Translated materials/information may not convey intended message

System Barriers: Socio-economic issues

- Lack of social support
 - Those without social support are less likely to
 - Be motivated to take medication
 - Receive reminders from others
- Financial status
 - Impacts access to healthcare and medications
 - May not be able to pay the medication cost or the co-pay associated with a drug plan

System Barriers: Socio-economic

- Lack of or cost of transportation and impaired patient mobility
 - Difficult to attend appointments
 - or to drop off or pick up prescriptions at pharmacy

Measuring Adherence: Consumption

- Measures of medication consumption
 - Pill counts
 - Often inaccurate or not feasible due to:
 - Missing information from labels
 - Variability between dispense and start dates
 - Old and new supplies combined

Measuring Adherence: Consumption

- Patient self-report
 - DRUGS tool; MedTake test
 - Quick screening tools
- Electronic medication adherence devices
 - MEMS; MDLog; CompuMed
 - Expensive
 - Not readily available

Measuring Adherence: Possession

- Measures of medication possession
 - Refill records, community pharmacy
 - Inconsistent report designs
 - Electronic claims databases
 - Medication possession ratio (MPR) reliable
 - Days' supply of drug over 1st yr of use/# days in yr
 - If ratio < 1 = lapses in Rx refills
 - If ratio 1 or greater; "perfect compliance"

Measuring Adherence: Possession

- Electronic claims databases
 - Persistency
 - Amount of time that person remains on chronic drug therapy
- Physician office electronic prescribing records
 - PPR prescription possession ratio
 - Similar to MPR

The SMAT was designed to address many of these barriers:

- The SMAT assessment tool provides a comprehensive approach to determining a patient's ability to self medicate;
- The scoring system included in the SMAT allows for an objective interpretation of the patient's results;
- The SMAT also allows the pharmacist to plan interventions with the patient, caregivers and healthcare team;
- And finally, the SMAT may help prevent medication mismanagement events that can result in hospitalization.

Module I: Introduction and Background

Part B: The Self-Medication Assessment Tool

our own footer Your Logic

Description

The SMAT includes five scales that measure the various abilities required for safe and effective medication self-management.

- 1. Functional Scale 22 items; 2 or 3 point score per item
 - Measures sensory, perceptual & physical abilities
- 2. Cognitive Scale 22 items; 3 point score per item
 - Measures the ability to make judgments, manipulate information and interpret instructions

Description

- 3. Recall Scale 4 items per drug; 2 point score per item
 - Medication names, indications, dose regimen, description of own regimen
 - This scale determines if initial medication instructions were understood and remembered.
- 4. Purposeful non-adherence 3 items; 4 point score per item
 - Experiences with side effects
 - Belief in value of medication to health
 - History of stopping a medication

Description

- 5. Self-reported adherence 4 items per drug; 2 point score per item
 - Patient's assessment of compliance to own medication regimen

Evaluation of the SMAT

- Focus groups with pharmacists were held to ascertain opinions on:
 - Usefulness of the SMAT
 - · Ease of use
 - Thoroughness
 - Willingness to use SMAT

Evaluation of the SMAT

The reliability and validity of the SMAT was then tested in a sample of patients admitted to The Moncton Hospital between 2006 and 2008.

Can J Hosp Pharm 2011;64(1):16-24

Evaluation of the SMAT

- Sample Characteristics
 - Mean age of 81.5 yrs (range from 65-99 years)
 - Education level
 - Majority had one or more years in high school
 - Cognition
 - MMSE scores ranged 12-30 (mean 26)
 - CLOCK test scores ranged 4 13 (mean 9.2)

Validity and Reliability of the SMAT

- SMAT scales have high internal consistency
 - The items within each scale address the same domain.
- The SMAT shows high inter-rater reliability
 - agreement between two pharmacists who independently scored the same patient
- SMAT scores show high reliability
 - Patient scores remain stable over time

Validity and Reliability of the SMAT

- A strong correlation can be expected between the patient's results on:
 - The Cognitive Scale and
 - Results on the Functional Scale
 - Results on the Recall Scale
 - The Recall Scale and
 - Results on the Self-reported Adherence Scale

Validity and Reliability of the SMAT

- A significant negative correlation was found between results on:
 - The Cognitive Scale and
 - results on the Purposeful Non-adherence Scale
- Based on the study sample results, there is an expected correlation between:
 - Increasing age and a
 - decrease in Functional score
 - decrease in Cognitive score

Convergent Validity

- The Clock Drawing Test (CDT) is a common screening measure used to identify dementia and other cognitive impairments.
 - CDT correlates with the functional, cognitive and recall scales of the SMAT

Convergent Validity

- The Mini-Mental State Examination (MMSE) is a common screening measure used to identify cognitive impairment & monitor cognitive change over time.
 - MMSE correlates with the cognitive, recall and self-reported adherence scales of the SMAT.

Convergent Validity

- The Cognitive Competency Test (CCT) is used to measure cognitive performance within the context of everyday tasks.
 - CCT correlate with the functional, cognitive and recall scales of the SMAT

Evaluation of the SMAT – Results

- Acceptability to patients
 - Post –test surveys yielded positive reviews by patients:
 - Directions clear and easy to follow
 - 45 to 50 minute testing time not distressing
 - Assessment perceived to be useful

Evaluation of the SMAT – Results

- Clinical Usability
 - Pharmacists were able to make recommendations regarding adherence aids and supervision required using the scores from the SMAT
- Predictive Validity
 - Further research is underway to determine how well scores on the SMAT predict long-term health outcomes.

Conclusions

- The SMAT affords pharmacists a multifaceted tool that can help determine a geriatric patient's medication management ability.
- The tool has strong patient acceptability.
- The scale is reliable across time and across pharmacists, and has been shown to have acceptable validity.
- Scales with a stronger cognitive aspect relate well to measures of cognitive function.
- SMAT scoring system provides objectivity for clinical recommendations.

Lead Researchers

- Janice Irvine-Meek, Pharm.D
- Odette Gould, Ph.D.

Our Team

- Erin Clarke, RPh
- Lisa Hebert, Pharm Tech
- Michelle Lemoine, OT
- Chantal Michaud, RPh
- Gisea Pisegna, RPh
- Allison Post, Pharm Tech

- Jane Soucie, OT
- Heather Swan, OT
- Laura Todd*, B.A.
- Hannah Wheaton*, RPh
- Melissa White, Pharm Tech

* Worked on the study as summer students

Acknowledgements

- Moncton Hospital Foundation
- Medbuy Purchasing Group
- Canadian Society of Hospital Pharmacists, Research Foundation
- Dalhousie Pharmacy Endowment Fund
- Family Practice/Geriatrics Program and Dept of Pharmacy Services,
 The Moncton Hospital

This completes Module I of the SMAT Training Program.

Thank you!